
Modeling Microorganisms

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Lukas Mitterhofer
Matrikelnummer 1226847

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ivan Viola, Associate Prof. Dipl.-Ing. Dr.techn.
Mitwirkung: Peter Mindek, Dr.techn.

Tobias Klein, M.Sc.

Wien, 14. März 2017
Lukas Mitterhofer Ivan Viola

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Modeling Microorganisms

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Lukas Mitterhofer
Registration Number 1226847

to the Faculty of Informatics

at the TU Wien

Advisor: Ivan Viola, Associate Prof. Dipl.-Ing. Dr.techn.
Assistance: Peter Mindek, Dr.techn.

Tobias Klein, M.Sc.

Vienna, 14th March, 2017
Lukas Mitterhofer Ivan Viola

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Lukas Mitterhofer
Kienmayergasse 45/14, 1140 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. März 2017
Lukas Mitterhofer

v

Danksagung

Ich möchte mich an dieser Stelle bei Professor Ivan Viola für seine Hilfe im Zuge des
Projekts, für die konstruktive Kritik und die Vorschläge für weitere Verbesserungen,
bedanken. Des Weiteren möchte ich mich bei Peter Mindek und Tobias Klein bedanken,
welche mich während der Implementierungs-Phase unterstützt haben. Als originäre
Entwickler des Tools cellView konnten sie mir wichtige Informationen mitteilen, was zu
höherer Qualität der Endversion wesentlich beigetragen hat.

vii

Acknowledgements

I would like to thank Professor Ivan Viola for his guidance through the whole project,
the constructive critics and the suggestions for further improvements. I also want to
thank Peter Mindek and Tobias Klein for their support during the implementation phase,
as contributors to the original cellView tool they provided additional information which
greatly helped developing the final version of the cellView editor.

ix

Kurzfassung

Die Modellierung von Mikroorganismen ist eine aufwändige Aufgabe, wenn Biologen
visuelle Repräsentationen erstellen möchten. Um solche Strukturen zu modellieren, muss
jedes Molekül an seiner entsprechenden Position platziert werden. Für komplexe Organis-
men kann diese Aufgabe sehr viel Zeit beanspruchen, daher ergibt sich die Notwendigkeit
eines verbesserten Modellbildungsansatzes. Es wäre möglich, dieses Problem durch ein
Regel-basiertes System zu lösen, allerdings folgt die Natur selten eindeutig festgelegten
Regeln. Aus diesem Grund ergibt sich die dem Projekt zugrundeliegende Idee, molekulare
Gebilde (zum Beispiel Proteine oder Lipide) basierend auf statistischen Schätzungen
und Verteilungen zu platzieren. Ein Entscheidungsbaum evaluiert die Handlungen des
Anwenders und lernt aus ihnen, getroffene Annahmen werden im Baum abgelegt und
für gleichartige Moleküle neu evaluiert, was die komplette Struktur reorganisiert. Ziel
ist es, dem Anwender zu ermöglichen, komplexe Zellteile mit minimaler Anzahl an not-
wendigen Schritten zu modellieren. Nicht nur die Platzierung ist ein Kriterium, auch die
Orientierung in Richtung eines Referenzpunktes, auch Cluster-Bildung, unterschiedliche
Verteilungen und andere Interaktionsmöglichkeiten in einem Echtzeit-Editor sollen die
Modellierung von Mikroorganismen deutlich verbessern.

xi

Abstract

Modeling of microorganisms is a cumbersome task, when biologists want to create a
visual representation of a certain microorganism. To correctly model structures on atomic
resolution, each molecule (for example proteins and lipids) has to be placed at its correct
position. For microorganisms of larger dimensions the modeling process takes a very long
time, at this point an improved modeling approach is required. It would be possible to
create a rule-based modeling approach, but usually rules restrict the final outcome and
produces repeating patterns. Therefore a tool that places molecules based on statistical
evaluations and foresight was the main idea behind this project. The tool should allow
for modeling complex organisms on molecular resolution by placing a minimal amount of
examples and generalizing similar entities. A decision tree as learning structure evaluates
the user’s actions, learns from them and reorganizes the whole structure. With this
approach the user should be able to model complex cellular structures in as few steps as
possible, also more complex actions, such as orientation towards a certain reference point,
clusters, varying distribution united a real-time editor should improve the modeling task
significantly.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 3
2.1 Rendering Techniques . 3
2.2 Machine Learning . 4
2.3 Procedural Modeling . 5

3 Methodology 7
3.1 Compartments . 7
3.2 Implicit Surfaces . 9
3.3 Surface Points of Implicit Surfaces . 10
3.4 Decision Tree . 10
3.5 The Problem of Overlapping Molecules 11
3.6 Import and Export . 13

4 Implementation 15
4.1 Compartments . 15
4.2 Real-Time Configuration . 17
4.3 Import and Export . 17

5 Results 19
5.1 Compartments . 19
5.2 Real-Time Configuration . 20
5.3 Collision-Detection . 21

6 Reflecting 23

7 Conclusion and Future Work 25

xv

Glossary 27

Bibliography 29

CHAPTER 1
Introduction

Current molecular modeling tools like cellPACK [JAAA+17] allow the manual placement
of molecules to create a visual representation of a microorganism. This task is very
cumbersome if the microorganism consists of thousands of molecules. In addition it is
necessary to gather all the information to create a plausible visualization. To shorten the
amount of time needed in order to create a model, the goal of this thesis is to create a
tool, which interprets the user’s actions, feeds the information into a learning structure,
and applies the transformation to molecules of the same type. Typically microorganisms
consist of many different macromolecules, but they also contain many of the same type,
which may be found in similar locations. To precise the final position of the molecules
several actions might have to be interpreted, but the adaption is still faster than the
manual placement of each molecule on its own. To speed up the modeling process and
provide an intuitive way to fulfill this task some general assumptions have been made.
The user starts with the formation of compartments the cell consists of. Typically the
microorganism’s outermost compartment is the membrane, more compartments, such as
for instance a capsid, can be added too. After creating the overall structure on mesoscale,
the user can switch to nanoscale and add macromolecules to the microorganism. These
molecules can be located in very specific regions of the microorganism, at this point a
learning structure, namely a decision tree, interprets the user’s actions and applies the
transformations, in terms of relocation and reorientation, to molecules of the same type.
The used data comes from the RCSB Protein Data Bank [RU17]. The basic components
of microorganisms, for example proteins, are measured through procedures like the X-ray
crystallography, which determines the atomic and molecular structure. The measured
data of proteins is available at the RCSB Protein Data Bank as so called PDB files.
These files can be downloaded within the tool and used to populate the microorganism
and create a plausible representation, which may be used for educational purposes, but
also to gather a better insight into cell routines and their composition.
There exist many rule-based modeling approaches, especially in the field of modeling and

1

1. Introduction

simulating biochemical systems and cell signaling in particular. These approaches use
a set of rules that indirectly specify a mathematical model. The relations are typically
represented by—if this than that—rules. The definition of rules is hard, especially
because rules typically result in repeating patterns, which usually do not occur in nature.
There exist approaches, which define certain rules through algorithms, which aim at
numerical approximation of functions [SBV98]. The resulting fuzzy systems require
expert knowledge and operator training. A user is able to reach an optimal outcome
through targeted interventions, but such tools are not usable without further knowledge
about the tool itself and its behavior.
Rule-based approaches are well fitting in many domains, but due to the fact, that the
nature does not always follow certain rules and those tools are hard to use for a layman.
We wanted to support the process by analyzing the user input and generating statistical
estimations about the target position of similar elements in the scene. The main benefit
of a statistical approach is, that each action, performed by the user, has a weighted
influence to the whole structure. As a simple example, if the user wants to place all
proteins of a certain type inside a cellular compartment, the only thing he has to do, is
move one of those proteins into this compartments, all the others will follow because
there is no alternate information about the placement. If he then decides that a third of
them is also found outside the membrane he has to place one outside and again one inside.
This is a simple example for the placement, but also the rotation towards a point of
reference, the formation of clusters between the same or different molecules is considered
and evaluated in the background. With this approach the modeling process is sped up
significantly. The original cellView shows a visualization of a HIV virion, after analyzing
the composition of this HIV virion it was recreated with high similarities in about 15
minutes. The possibilities of extensions are widely spread and are very promising.

2

CHAPTER 2
Related Work

The project is an extension to the existing software cellView, developed at the TU Wien.
cellView is a Unity-based tool [Tec17] that was designed to load recipes of microorgan-
isms, modeled with cellPACK [JAAA+17]. These recipes were generated after the heavy
modeling process to load these structures with visualization tools such as cellView. So
the software was tailored for the visualization of such files and provides many exploration
features. The modeling of new structures was not possible up to now, but there were
already interfaces which made it possible to extend it. With that approach the tool
becomes more interactive, a user has the possibility to create new structures by loading
PDB files and insert certain amounts into the scene. By the placement of single proteins
or lipids, in the following called ingredients, a decision tree evaluates actions and adapts
its distribution functions. The other ingredients of the same type are then evaluated
against the decision tree to simplify the modeling process.

2.1 Rendering Techniques
A very important requirement for a modeling tool is to support processing in real time.
The tool is an extension to cellView, so it greatly benefits from its optimized rendering
pipeline. Different rendering techniques are applied to boost the rendering performance,
allowing to implement lots of new features without losing the real-time aspect. The level
of detail technique is used to overcome the problem of processing each atom per frame
by reducing the overall amount of atoms per ingredient depending on the distance to the
viewer. This approach is depicted in Figure 2.1.

In addition the atom spheres are not represented by solid geometry, but with billboards,
a technique, that replaces complex shapes by a 2D texture, placed at the atomic position
in the scene and oriented towards the viewer. With this approach the amount of triangles
needed for a perfectly round sphere is reduced from some hundreds to only two. To

3

2. Related Work

Figure 2.1: Illustration of a dynamic Level-of-Detail, where the amount of atoms is
reduced with increasing distance to the viewer.

improve the visual output and enrich it by a better depth perception the ambient occlusion
shading technique is applied. With ambient occlusion the amount of light that reaches a
given surface point is calculated. This technique enhances the final quality, structures
such as tubes or a deformed surface are better comprehensible by the viewer. With these
important rendering techniques scenes consisting of millions of atoms can be rendered in
real time.

2.2 Machine Learning

Michie, Spiegelhalter and Taylor wrote an interesting paper in the field of statistical
machine learning in 1994. Although many things have changed in the past 20 years and
therefore the discussion about the performance is not as important as back then, the
comparison of different classification approaches is still very useful. As stated in their
article, the usage of decision trees for the task of machine learning is widely spread, if
a decision tree would be allowed to grow without limits to any number of leaves, the
tree would possibly classify the given data with maximal accuracy. Another motivation
for the usage of decision trees was their understandability, the state is much easier to
analyze than for example a neural network [MST94].
Engineers have been trying for a long time to understand and emulate the human brain.
The so called artificial neural networks are inspired by the human brain and try to
approximate it roughly. These networks consist of many interconnected nodes which are
the so called neurons (from the neurons of the human brain). These graphs propagate an
input based on the edges and their weights to the next neurons and can be interpreted
as—if this then that—rules. They are very popular in the field of machine learning and
would have been a valuable candidate for our tool, therefore it had to be mentioned. For
further interest the paper of Michie et al. [MST94] is highly recommendable.

4

2.3. Procedural Modeling

2.3 Procedural Modeling
Procedural modeling is a powerful technique in computer graphics. It is currently used
to model trees and buildings, but also large objects or collections of similar objects
such as terrains and cities. Procedural modeling makes use of a predefined set of
rules, which produce a certain outcome. These rules may be changed and adapted to
produce the desired output. Procedural modeling is based on the observation, that
things, such as plants, can be generalized and generated with slight variations. The
so called Lindemayer-System (L-system) [PL12] is basically a formal grammar, which
contains a set of production rules and perform a parallel rewriting process to generate
similar objects. This system is used in example for trees and works really well. The
generalization of microorganisms is not necessarily rational, although similar procedural
modeling approaches could also be applicable for molecular modeling, the drawbacks are
crucial. There is a known lack of control due to the cryptic description of the rules and
the modeled relations between the models [BŠMM11], in addition the results are hardly
predictable. In molecular modeling these rules would be similarly hard to formalize, and
would not be valid for any microorganism that may be modeled in the future. To avoid
these restrictions a statistical modeling approach is appealing, mainly because we do not
have to make any assumptions about the final outcome, the system is trained during the
modeling process. This process needs user input, depending on the desired outcome it
may need much input, but the final system is adapted and tailored to the current model.

5

CHAPTER 3
Methodology

In this chapter some of the most important approaches, applied in the modeling tool
are discussed, benefits and drawbacks are shown and also possible improvements are
stated. The structure of a microorganism can be described on several scales. On
mesoscale large structures, so called compartments, and the hierarchy they form, can be
described by geometric shape modeling. On nanoscale the positions and orientation of
individual macromolecules can be described by probabilistic modeling. Our approach deals
specifically with the modeling on nanoscale, which depends on the provided geometric
description of the compartments.

3.1 Compartments
A microorganism’s outermost component is the membrane, the content of the cell is
completely within the membrane. To further subdivide a cell in smaller regions new
compartments can be introduced, which form a hierarchy. There exist several physical
compartments in the literature, for example the eukaryotic cell, which has a nucleus
and organelles as subunits in the cell, and cytoplasm within the membrane, but outside
the nucleus. With this knowledge the first step in the creation process was clear, a user
should initially model only these compartments to get a feeling of the basic structure
before filling these compartments with different proteins or fluids such as the cytoplasm.

The membrane of the prokaryotic- and the eukaryotic cell in Figure 3.1 have an overall
shape of a sphere, also the nucleus of the eukaryotic cell has the shape of a sphere. In
general it would be necessary to provide and support a large variety of shapes, therefore
we made use of the signed distance function, which can be adapted to mathematically
describe geometric surfaces. As reference implementation we provide the two shapes of
the prokaryotic- and the eukaryotic cell. The compartments are completely represented
by these signed distance functions and form a hierarchy in the scene, the membrane is
the so called root compartment and contains the complete cell interior. The exterior

7

3. Methodology

Figure 3.1: Exemplary image of a prokaryotic cell (left) [Med17] and an eukaryotic cell
(right) [Wik17]. Note that these cells are normally not equally sized, the prokaryotic cell
typically only has about 1/10.000 of the volume of an eukaryotic cell.

can be modeled too to show the region of occurrence, such as for instance the human
blood. Each compartment inside the membrane is a child of the membrane, the space
between the membrane and other compartments such as the nucleus, belongs to the root
compartment and each space can be filled individually.
In the beginning a different approach was used, the compartment was represented by a
semi-transparent mesh. This approach led to several inconveniences, in the initial step
of the modeling process the user had to create the compartments with meshes. After
the compartment creation the user had to place membrane molecules on the surface to
populate it. The calculation of intersections with the mesh were unhandy, which led
to the usage of signed distance functions. With the introduction of these functions in
combination with meshes it was hard to keep the functions in line with the mesh in terms
of scale and rotation. Therefore the approach was dropped and the compartment was
fully represented by the signed distance function, forcing the user to select a membrane
molecule in the beginning of the modeling process, which made it also easier and faster
for the user to model certain structures. The signed distance functions also have the
benefit that they are really fast in terms of evaluation time. Intersections with surfaces
and the distance to the surface are important to adapt the correct leaf nodes of the
decision tree, therefore this approach has been used.

8

3.2. Implicit Surfaces

3.2 Implicit Surfaces
When modeling the compartments of a microorganism we needed an efficient way to
represent those compartments, in terms of visual representation, but also in terms of
intersection testing and distance evaluation. The main reasons why implicit represen-
tations are used, are the fast evaluation for intersection and distance calculation and
inside/outside tests for any given point. In addition implicit representations enable
computing of smooth transitions and blending between different types of surfaces, simply
by linear interpolation between two surfaces [BW90]. By preserving the continuity of
two different surfaces seamless transitions between different molecular surfaces can be
achieved. These benefits are hard to achieve in real time with boundary representations
between geometric models [PJR+14]. Although we did not make use of the full potential
of implicit surfaces yet, a good foundation is laid for future improvements and extensions.

In general an implicit surface is a surface in Euclidean space, defined by an equation
F (X, Y, Z) = 0. An implicit surface consists of the whole set of zeros of the function, so
it is basically a mathematical representation of a given surface.

Examples for implicit surface equations:

• plane: x + 2y − 3z + 1 = 0

• sphere: x2 + y2 + z2 − 4 = 0

• torus: (x2 + y2 + z2 + R2 − a2)2 − 4R2(x2 + y2) = 0

3.2.1 The Signed Distance Function

Distance functions can theoretically approximate any shape. Primitive shapes such as
spheres, ellipsoids, boxes and cones can be represented by a simple and exact signed
distance function. For more complex shapes the distance functions have to be adapted or
combined with union, intersection and subtraction [PV], also deformations are possible.
For some complex shapes the distance function is only an approximation.
As previously discussed the compartments are not represented by a solid geometry, but
by a signed distance function. In general, distance functions define the distance between
two elements. Signed distance functions can be used to evaluate for any given point in
space if it lies either inside an object, on the surface or outside. The signed distance
functions also have the benefit that they are really fast in terms of evaluation. To be
more general, we can describe a shape by a function f(p). The function result indicates
for each point p if f(p) > 0 the point lies outside the object, if f(p) < 0 the point is
within the object and if f(p) = 0 the point lies exactly on the surface.

The usage of implicit surface descriptions is simplifying the implementation significantly,
when the user wants to place certain molecules in certain areas, the algorithm simply
has to check the result of the compartment’s signed distance function, intersections with
the children (or sub-compartments) are fast and easy to calculate. The signed distance
functions have to be adapted to correctly handle also scaled and rotated shapes.

9

3. Methodology

3.3 Surface Points of Implicit Surfaces

After introducing the signed distance functions, which can be evaluated to check whether
a point lies inside, outside or on an implicit surface, there is still the problem of finding
a point which lies on the surface. The task of finding a surface point is important for
instance when a compartment is created and populated by a certain macromolecule. The
initial approach to find surface points was to take random samples inside the bounding
box of the compartment, evaluate the signed distance function for that certain point,
if the result is zero or within some threshold epsilon, the point is returned, otherwise
continue with the random sampling process. Although this approach did not result in a
significant performance loss, it had to be optimized, if the bounding box was large and the
epsilon was small it resulted in a noticeable delay. This approach was optimized by taking
a random sample within the bounding box and calculating the direction vector from the
compartments center to the point. By using the result of the signed distance function
and multiplying the value with the normalized direction vector the point approaches
the surface of the compartment. After a point within a certain threshold epsilon to the
surface is reached a surface point is found. To be sure that the resulting surface point is
actually the closest point the same procedure is evaluated for each point in the direct
neighborhood of the initially found surface point. If the distance to our point decreases a
closer point has been found, otherwise the algorithm terminates.
This approach works very well with spherical shapes, for the capsule, which is also used
as a compartment, the resulting population of the surface is not normally distributed.
The reason is that a point is more likely to be in the cylinder of the capsule than in the
hemispheres. With the application of a collision detection algorithm the final output is
indistinguishable from the random sampling approach, without a collision detection the
resulting images may contain holes and clusters.
The random sampling approach finds a surface position for a given ingredient with an
average of about 250 samples with a high precision. This results in 250 evaluations of
the signed distance function of the corresponding compartment to find a destination for
one ingredient. The before mentioned algorithm to find the closest surface point finds a
position with higher precision with the first attempt, making it much faster than the
random sampling.

3.4 Decision Tree

After describing the methodology of the compartment structure and their core function-
ality on mesoscale, the transformations of the macromolecules have to be handled. The
modeling process cannot be done molecule by molecule, as there can be several thousands
of molecules in a microorganism. Therefore we need a learning structure, which takes the
transformations of the modeling process as input and adapts to these transformations, so
they can be considered and applied to macromolecules of the same type. The main reason
the decision tree has been used as a machine learning approach, is that the decision tree
is easier to understand and interpret as for example a neural network, moreover it was a

10

3.5. The Problem of Overlapping Molecules

convenient way to map the hierarchy, formed by the compartments, to the decision tree.
Another benefit is, that decision trees allow the addition of new evaluation criteria, which
is an important aspect for a tool, which may in future be extended. Debugging the tree
is also comparatively easy, the complete structure can be logged in an understandable
manner, which makes the localization of errors easier than for instance in neural networks.
The decision tree is the core feature of the modeling tool, storing the gathered information
from the user’s actions and applying this information to ingredients of the same type.
With its help the modeling process should be shortened, enabling to model complex
microorganisms in comparatively short time. The decision tree is initially an empty
node. After the first interpretable user action a subtree for that specific ingredient is
created and appended to the root node of the decision tree. Depending on the model’s
compartment structure a hierarchy is created. Each node of the tree holds information
about a certain ingredient type relative to the compartments in the scene. When a new
action occurs the decision tree is modified by the new value, but only for those, which
are inside the same compartment. Afterwards all affected ingredients, which are either
the ingredients with the same id, or ingredients, which are in some kind of relationship
to the changed one, are updated as well, receiving a new position and/or orientation.
The decision tree is depicted in Figure 3.2.

As there can be seen in Figure 3.2 the decision tree takes the compartment hierarchy
as a subtree, modifications of an ingredient inside a compartment does not affect the
probabilities the same ingredient contained in another tree node (another compartment).
When modeling microorganisms the depth of the decision tree is limited by the depth of
the compartment hierarchy. The amount of compartments in a microorganism is typically
relatively small, compared to the amount of ingredients the microorganism contains.
Therefore also the depth of the decision tree is quite small, making the transition of the
tree and the evaluation for a specific ingredient type and position fast. A tree node holds
their respective child nodes, the amount of placed ingredients (inside the compartment
or on the surface), the rotation probabilities and the compartment it belongs to. Each
modification of the decision tree must be reversible in order to allow undo the last
modification and go back to the initial state. The constraints are considered when
ingredients of the referenced type are updated and a new position and/or orientation is
requested.

3.5 The Problem of Overlapping Molecules

The process of modeling microorganisms, consisting of several compartments, filled with
different molecules and proteins, can result in very crowded scenes. Without application
of a collision detection several molecules are overlapping, creating slightly disruptive
result. Therefore some kind of collision detection is needed to create more plausible results.
Since there are so many molecules consisting of thousands of atoms a precise collision
detection would result in a significant performance loss. Therefore an approximation is
taken, which takes the largest radius of an ingredient. This approach works very well

11

3. Methodology

Figure 3.2: The decision tree as implemented in the tool. The tree grows with the more
information it has, gathered through the user’s actions. Each different ingredient type
has its own subtree, which is added to the root node.

with spherical proteins, but with elongated substances the bounding sphere is too large,
leading to large holes, as depicted in Figure 3.3.

The conflicting ingredients are assigned to their corresponding compartment, based on
the probability. Then it is distinguished whether they are on the surface, inside or outside
this specific compartment. Then they move into a random direction without crossing
the border of other compartments until they find an empty spot with no intersections.
A counter counts the amount of trials and errors, finally removing the substance if no
empty space could have been found after a certain amount of relocations.
The implemented collision detection approach is not optimal, as stated previously the
usage of bounding spheres for collision detection works only well for spherical shapes.

12

3.6. Import and Export

Figure 3.3: The currently used collision detection approach takes only the bounding
sphere. For almost spherical objects this approach works very well, for non-spherical
objects the collision detection may lead to holes in the final model.

The system is implemented in a modular manner, allowing the exchange of the current
collision detection approach by a more precise one by simply exchanging the compute
shader, which handles the collision detection itself, the resolution of the collisions is
implemented for either approach. A major improvement would be, to use an axis aligned
bounding box for the ingredients, which would only result in insignificantly small holes.
The reason, why this simple approach was used in our tool, is that it was not the focus
of our thesis to implement those algorithms, but rather come up with a functioning and
modular system and to provide a reference implementation to test the system and to
provide a proof of concept, the adaption to more robust approaches is ensured by the
modular system.

3.6 Import and Export

After creating a model of a microorganism it might be interesting for the user to have
more possibilities than only making screenshots of the model. Therefore we provide the
functionality to import and export the current scene, including all components such as
the macromolecules, the compartments, the clusters and the decision tree. Similar to the
cellPACK [JAAA+17] software, which allows modeling microorganisms and produces a
recipe for the model, which again can be loaded with a visualization tool, our modeling tool
should provide the functionality of exporting an intermediate version of a microorganism
in a way that the user can continue with the modeling process. Our tool makes use of
several different data structures, such as the decision tree, which contains all probabilities,

13

3. Methodology

the clusters, which can be formed and their composition. The compartment hierarchy
should be restored, each ingredient should be reloaded at its very position without
information loss. Currently we do not export the scene in a format, that an existing
visualization tool can interpret, but with a specification of the file format it would be
possible to visualize the microorganism also with other tools.

14

CHAPTER 4
Implementation

In this section the implementation of the features are discussed. Benefits and drawbacks
are showed up and the difficulties, which had to be overcome are briefly discussed.

4.1 Compartments
The initial step in the creation of a microorganism is to create the basic structure. As
first step the user has to add a root compartment, which usually is the cell membrane,
formed by a certain lipid or macromolecule. The membrane is populated on the surface
of the compartment, defined by its distance function. When creating a compartment
the user has the possibility to deform these compartments and add inner compartments
such as the capsid or organelles. An initially set cutting plane helps modeling also the
interior of the cell. If the needed ingredient is not present the user has the possibility
to download files anytime during runtime and make use of them. Compartments have
their own collision-detection implementation, which is valid for any shape which would
be added in the future as long as the distance function is correct. In the following the
algorithms that calculate the signed distance of the ellipsoid 4.1 and the capsule 4.2 are
described. In the first lines of both algorithms there can be seen, that the point gets
rotated by the inverse of the current rotation around the center of the compartment to
bring it to the correct position. For the capsule also the reference points a and b have to
be transformed. The radii of both the ellipsoid and the capsule are manipulated during
scale operations, translation does not change these values. This is necessary in order to
support transformations of the original shape.

With the distance function and a bounding box intersections are calculated before the
positions are updated, stopping the process if intersections are occurring. Therefore the
inner compartments cannot be scaled or moved out of the membrane. This is supporting
the modeling process by not allowing illogical situations. The inner representation of these
compartments is only the signed distance function. When adding new compartments

15

4. Implementation

Algorithm 4.1: Signed distance function for a rotated ellipsoid [Qui17]
Input: A point in space ~point, the current rotation quaternion
Output: Float x, if x == 0 the point is on the surface, if x < 0 the point lies

inside, if x > 0 the point lies outside
1 Vector3 ~pos = QuaternionTransform(Quaternion.Inverse(rotation), point);
2 return (V ector3.Scale(~pos, 1/ ~radii).magnitude − 1) ∗ min ~radii;

Algorithm 4.2: Signed distance function for a rotated capsule [Qui17]
Input: A point in space ~point, the current rotation quaternion
Output: Float x, if x == 0 the point is on the surface, if x < 0 the point lies

inside, if x > 0 the point lies outside
1 Vector3 ~pos = QuaternionTransform(Quaternion. Inverse(rotation), ~point);
2 Vector3 ~capsA = QuaternionTransform(Quaternion. Inverse(rotation), ~capsuleA);
3 Vector3 ~capsB = QuaternionTransform(Quaternion. Inverse(rotation), ~capsuleB);
4 Vector3 ~pA = ~pos- ~capsA, ~bA = ~capsB- ~capsA;
5 Float h = clamp(dot(~pA, ~bA)/ dot(~bA, ~bA), 0, 1);
6 Vector3 ~v = ~pA˘ ~bA ∗ h;
7 return (V ector3.Scale(~v, 1/ ~capsuleRadius).magnitude − 1) ∗ min ~capsuleRadius;

to the tool, the only thing needed is a valid distance function, handling also possible
rotations of the original shape. The developer has to handle the different transformations
by applying rotations, scale and translation only for the compartment-specific member
variables, such as the center point. For example the translation in the ellipsoid does only
translate the center point. The scale modifies the radii of the ellipsoid, and the rotation
is simply stored and used in the signed distance function to provide the correct output
also for rotated compartments. Everything else is handled in the abstract compartment
class, when a developer wants to add a new compartment shape, the new class has to
extend the abstract compartment class. The methods that have to be implemented in
order to get a working compartment shape are the following:

• The method GetName should provide an unique name.

• The method GetPossibleChildOrigin should provide a valid position inside the
current compartment for child compartments, which is not trivial for shapes such
as the torus.

• The method HalfSize should halve the size of the shape based on the size of its
parent, so the compartment does fit inside its parent without intersections.

• The method GetSignedDistance is the signed distance function, which handles also
the rotation of the compartment.

16

4.2. Real-Time Configuration

• Lastly the method AdaptCompartmentToTransform has to adapt the member
variables, such as the radii or the dimensions, based on the transform type.

4.2 Real-Time Configuration
cellView loads a recipe containing all macromolecules, each of these ingredients is assigned
to a specific group or compartment and has a certain color. When a user wants to model
a microorganism there are initially no assumptions about the ingredient group they
belong to, in fact, if the user downloads a protein from PDB database the tool knows
nothing about this new protein. For already existing ones we have a common name
and a description, which tells the viewer many things about the macromolecule itself,
but also about the composition of the microorganism. For downloaded files we only
have a four-digit alphanumeric identifier of the protein. To enable this benefit also for
the modeling tool we created a JSON file, which stores this four-digit identifier of the
ingredient, a common name, a description and a color, for each ingredient in the scene. A
new entry is created automatically when downloading a file from PDB database. Now the
user has the possibility to change this document with any text editor, also during runtime.
With that, a user is able to create the desired visual representation of the structure,
by communicating certain information via the color (such as blood proteins, which are
usually assumed to be red, or viral proteins which are recognizable by an unhealthy
looking color, such as green). Moreover the creator is able to write a description that
is tailored to the modeled microorganism, for example a certain protein has a specific
purpose, but in an infected cell this purpose is, due to the infecting substances, destroyed.
This is implemented by including this functionality into the already existing info-text
controller. The user has a “Refresh Configuration” button, which parses the JSON
file and replaces the currently stored values for the color, the common name and the
description by the fields in the file. The usage of a JSON file to edit this information
is not very user-friendly, mainly because this file is not editable in the software itself
and because JSON files have a strict syntax, but errors are not shown with general text
editors. The idea behind it, was to show up the possibility, it could basically also be
included in the tool itself, but an intuitive graphical user interface would have to be
implemented.

4.3 Import and Export
The importing and exporting process happens through serialization and deserialization
of all needed scene components with JSON. In large scenes, with many thousands of
proteins, a complex decision tree, many compartments and clusters the file size may get
quite big. When exporting the whole information is written in a cfv file (cellView-file).
These files can be imported on any other computer without losing any information, the
whole structure is restored and the modeling process may be refined or also changed,
a limitation of this process is, that already made decisions are hard to invalidate. If
incorrect decisions have been made earlier the resulting image may always show influences

17

4. Implementation

Table 4.1: Comparison of the import and export of models with increasing amount of
scene objects.

File size (scene objects)

Desktop with Intel i5-3570K
3,4 GHz and NVIDIA
GeForce GTX 750

Laptop with Intel i5-6200U
2,4 GHz and NVIDIA
GeForce 940M

Import Export Import Export
7,95 MB (5.000) 3,416 sec 4,009 sec 4,656 sec 5,078 sec
15,6 MB (10.000) 6,458 sec 6,552 sec 9,250 8,375 sec
156 MB (100.000) 64,553 sec 65,692 sec 92,121 83,850 sec

of this mistake, for example some ingredients may be found at a point where they should
not be. Therefore a redo and undo functionality has been implemented, allowing the
user to undo or redo up to three actions, also removing modifications of the decision tree.
This enables the user to try a certain step, if the outcome is not satisfactory or decreases
the quality of the model, it is possible to restore the previous state without saving the
scene after each step. More steps would be possible, but the storage of many memory
intense actions are very demanding and may lead to errors when restoring the previous
state.

In Table 4.1 there can be seen that the duration for the import and export as well as the
file size increase linearly by the amount of objects in the scene, this is due to fact that
no optimization steps have been applied, the file size as well as the duration could be
decreased significantly by storing the necessary values more efficiently.

18

CHAPTER 5
Results

After explaining the concepts and the implementation of some core features of our tool,
in this chapter some visual examples are provided.

5.1 Compartments

Figure 5.1: Different possible compartment shapes, created through scaling and rotating
the primitive shape. 1A-1D are shapes, created from the ellipsoid, 2A-2D are created
from the capsule.

19

5. Results

As mentioned in previous sections we implemented the two compartment shapes ellipsoid
and capsule. These shapes are freely rotatable and scalable, so many different shapes
are already possible to create, as shown in Figure 5.1. These shapes would already be
sufficient to create a prokaryotic- and a eukaryotic cell, in the future more different shapes
or free-form surfaces could be implemented, to allow the modeling of more complex
microorganisms too.

5.2 Real-Time Configuration

Figure 5.2: 1A and 1B show the initial state when modeling a cell, in 1B the last
description is set, but if this description would not clarify the purpose of this ingredient
in this certain model in 2A the color values have been exchanged to provide a better
visual representation and in 2B the description of this ingredient has been changed.

20

5.3. Collision-Detection

When modeling a microorganism certain macromolecules are used, which may serve a
specific purpose in this microorganism. It is assumed, that it may be desired to modify
the description of the used macromolecules. In addition to create a better understandable
visual representation it may be desired to use a specific color for some ingredient, either
to highlight it, or to pack more information in the final outcome, as for example a
toxic substance could be colored in green or for blood proteins the most intuitive color
would be red. These values can be modified during runtime by editing the configuration
file, as depicted in Figure 5.2. Currently this feature is only usable when editing the
configuration file, which is yet not possible within the tool. A user-interface, allowing the
modification in the tool could be a future work.

5.3 Collision-Detection

Figure 5.3: This image shows the differences between a compartment, created without
collision detection (left) and the exactly same compartment with collision detection
(right).

Initially no collision detection has been implemented in our tool. The resulting images
had many overlapping molecules, which led to unsatisfactory results. After implementing
the general modeling tool a simple collision detection approach has been implemented.
Although the approach is very simple and only suitable for spherical molecules, the
resulting images were more plausible. A more precise approach may be implemented
in the future. In Figure 5.3 the differences between the initially created compartment
without collision detection and the exactly same compartment with applied collision
detection are shown.

21

CHAPTER 6
Reflecting

The final outcome of the tool we created was better than expected. With the available
compartment shapes it is already possible to produce good results. Also the decision
tree, which is yet only able to detect few different user actions, is strongly supporting the
creation process. Depending on the structure a user wants to model one may encounter
different problems, because some actions may not be taken into account. It is yet not
simply possible to model certain patterns, such as a certain surface structure of the
compartment hull (for example the capsid). There are also other limitations, such as
the placement of components in some subsections of the cell, which do not form a
compartment. To be more precise, the current implementation is strongly focused on
the compartments and the through compartments formed hierarchy. The calculations
for the positions and orientations of the components, as well as the adaption of the
decision tree and the resolution of the collisions is implemented on the CPU, only the
detection of the collisions is implemented on the GPU. These calculations are possible in
real-time and could still be optimized and extended to handle even more complex user
actions without significant performance loss. Heavy calculations, such as the collisions,
or to be more precise the resolution of the collisions lead to slight performance issues,
especially when there are several thousands of colliding ingredients. This problem could
be avoided by resolving the collisions on the GPU. Another limitation of the tool is
the correct placement of the ingredients. The algorithm takes the final position of the
component as a reference and adapts the decision tree according to the placement. If
it is not correct, the adaption made to the decision tree may lead to undesired errors
which are hard to readjust. Therefore we implemented the possibility to undo the last
three actions, which removes these previous modifications from the tree and also the
placement and orientation is restored. Although this eases the problem of the placement,
it is still impractical to place an ingredient at a desired position. The movement in three
dimensions makes it hard to see where exactly the ingredient is in correspondence to
other compartments and also other ingredients.

23

6. Reflecting

The previously shown screenshots are entirely created with the tool in short time periods.
The focus of this experiment was to create a tool, which reacts to the users input in
an appropriate way. This task was fulfilled and the modeling process is much faster in
comparision to the manual placement of each molecule. The movements of the ingredients
and the overall behavior are much more interactive. By providing the possibility to undo
recent actions mistakes can be rectified, making the modeling process almost entertaining.
The tool was entirely created with Unity3D [Tec17] and C#. In the beginning it was
quite hard to work with Unity, because some actions seemed to be arbitrarily, in the end
the tool was built on top of cellView without harming the previous functionality.
For statistical analysis of the user’s actions we make only basic assumptions about the
placement and the orientation, but these assumptions could in the future be extended to
understand also more complex actions. An idea would be to not only check the placement
relative to a given compartment, but also to check the distance to the compartment’s
border (for example the membrane). We took a closer look at the HIV virion, which is
loaded through a cellPACK [JAAA+17] recipe, and collected the information about its
composition. This HIV virion was modeled by hand by placing each component at its
very position. With the gathered information we tried to reproduce this structure with
our tool, the resulting image, compared to the original virus is depicted in Figure 6.1.
The resulting image is close to the original, containing the same amount of components.
To create this model it took us about 15 minutes of time, making it really fast compared
to the manual placement of about 20.000 components. With further improvement steps
and a better analyzation of the user input, the needed time might even be reduced and
the resulting structure may be even better.

Figure 6.1: HIV viria, the HIV virion on the left side is modeled with the tool, the right
one is the original model of the HIV virion, loaded with cellView. The models have the
same composition.

24

CHAPTER 7
Conclusion and Future Work

An approach for statistical modeling has great potential for the future, the composition
of microorganisms follows certain patterns, such as the occurrence of certain proteins in
a cellular compartment. Although an initial classification may be inaccurate, a learning
algorithm is able to predict possible positions with increasing precision. The development
of a tool, that does not take a rule based approach, but a statistical approach has great
potential to become very powerful. In statistics many different distributions exist, in
the development process we only used a Gaussian distribution, but with additional
distributions more possiblities in the creation process may show up. The possibilities
to extend our tool are given. Future improvements would be an implementation of a
more precise collision detection, to represent such crowded scenes with no overlapping
molecules, which improves the perception of the final image. Another possibility would
be to create templates, which could be later used for various different microorganisms.
The task of implementing possible cluster formations was cumbersome, because it leads
to many new tasks, on how to handle such clusters. But basically they could be also
represented by a certain template, by the means of a combination of proteins, which are
very likely to be found in a certain constellation. Another application would be to use
such templates for compartment boundaries, such as the capsid of the HIV virion, which
has a special star-shaped pattern that is hard to learn, but would be easy to be modeled as
a template. To further improve the modeling the addition of more different compartment
shapes would lead to more possibilities in order to create cells and compartments of any
shape. The tool provides interfaces where new compartments could easily be added with
only implementing the necessary methods and modifying the parameters, such as the
radii, based on the transformations. Currently we take advantage of the signed distance
functions. In order to support freely formable compartment shapes adaptions of the
distance functions would have to be defined, or could be described by combining different
primitive shapes and their respective distance functions.
Regarding the import and export in general it would not be necessary to parse the

25

7. Conclusion and Future Work

data with JSON, it is a convenient way and is easy to implement, but for example the
export in XML format would have been possible as well. The size of the output file is,
depending on the amount of ingredients, comparatively big, making both the import
and the export protracted. A very simple optimization step would be, to overwrite the
JSON properties of certain objects, such as the vector. Currently the vector holds the
normalized position, the magnitude and the squared magnitude, which results in much
larger file sizes for information, which is not directly needed. Other data, such as the
compartment hierarchy and the decision tree, occupy only a very small portion of the
file, compared to the proteins.
The research area of molecular visualization is a very interesting field, with many
possibilities for improvements and extensions. This tool would provide enough work
for many more people in order to create a reliable and powerful tool in the process of
modeling complex microbiological structures in a very short amount of time. The learning
process could be extended to recognize many more patterns and the science would clearly
appreciate such a tool, not only for visualization purposes, but also for students to make
microbiology more comprehensible and almost tangible.

26

Glossary

compartment A compartment is a subsection of the cell, which is usually surrounded
by a single or double lipid layer membrane. In the tool the compartments form a
hierarchy, the membrane, the capsid and other subsections are represented through
a compartment. 5

ingredient Ingredients in this context refer to any molecular structure, which can be
added in the modeling process. For the tool mainly proteins have been used.

27

Bibliography

[BŠMM11] Bedrich Beneš, Ondrej Št’ava, R Měch, and Gavin Miller. Guided procedural
modeling. In Computer graphics forum, volume 30, pages 325–334. Wiley
Online Library, 2011.

[BW90] Jules Bloomenthal and Brian Wyvill. Interactive techniques for implicit
modeling. ACM SIGGRAPH Computer Graphics, 24(2):109–116, 1990.

[JAAA+17] G. Johnson, L. Autin, M. Al-Alusi, D. Goodsell, M. Sanner, and A. Olson.
cellpack, March 2017.

[Med17] Mediran. Eukaryotic cell (animal). https://creativecommons.org/
licenses/by-sa/3.0/deed.en, February 2017.

[MST94] Donald Michie, David J Spiegelhalter, and Charles C Taylor. Machine
learning, neural and statistical classification. 1994.

[PJR+14] Julius Parulek, Daniel Jönsson, Timo Ropinski, Stefan Bruckner, Anders
Ynnerman, and Ivan Viola. Continuous levels-of-detail and visual abstraction
for seamless molecular visualization. Computer Graphics forum, 33:276–287,
2014.

[PL12] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty
of plants. Springer Science & Business Media, 2012.

[PV] Julius Parulek and Ivan Viola. Implicit representation of molecular surfaces.
Discussion paper.

[Qui17] Inigo Quilez. Modeling with distance functions, February 2017.

[RU17] Rutgers and UCSD/SDSC. The protein data bank, February 2017.

[SBV98] Magne Setnes, Robert Babuska, and Henk B Verbruggen. Rule-based
modeling: Precision and transparency. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 28(1):165–169, 1998.

[Tec17] Unity Technologies. Unity3d engine, February 2017.

[Wik17] Wikipedia. Average prokaryote cell, February 2017.

29

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Rendering Techniques
	Machine Learning
	Procedural Modeling

	Methodology
	Compartments
	Implicit Surfaces
	Surface Points of Implicit Surfaces
	Decision Tree
	The Problem of Overlapping Molecules
	Import and Export

	Implementation
	Compartments
	Real-Time Configuration
	Import and Export

	Results
	Compartments
	Real-Time Configuration
	Collision-Detection

	Reflecting
	Conclusion and Future Work
	Glossary
	Bibliography

